Comprehensive Cybersecurity Technology for Critical Power Infrastructure AI-Based Centralized Defense and Edge Resilience

Prepared for Eitan Yudilevich, Eynan Lichterman, and Tal Fischelovitch BIRD August 22, 2022

Task 7

Malware Threat Mitigation in ICS/SCADA Environment

Third Project Review Workshop

Dr. Wenke Lee Georgia Institute of Technology

August 22, 2022

Malware Attacks are a big problem in ICS/SCADA

Majority of In-the-Wild ICS Attacks/Malware were Launched from the SCADA Hosts Systems

We used FactoryIO and WinSPS to integrate a virtual test ICS/SCADA environment to analyze these behaviors

ICS Host-Based Attack Behaviors

Malicious Control Commands in our analyzed ICS malware were issued via the SCADA hosts software channel to devices, e.g., COM Ports. Other attacks issued commands via HMIs

	Connection type		
	Physical medium	COM Port	
	Serial Port Settings		
	COM ID	1	
	Baud rate	38400	
	Data bits	8	
8	Parity	Odd	
	Stop bits	1	
	Flow control	RTS Always	
	Physical medium Select the hardware devi communications or "Non	ice type to use for e" for an inactive	

BOOL WriteFile(

[in] HANDLE hFile, //"COM" HANDLE

```
[in] LPCVOID lpBuffer, // DEVICE-
```

```
TAG
```

```
[in] DWORD nNumbergert Read ite();
    [in] HANDLE hFile, //"COM"
HANDLE
    [out] LPVOID lpBuffer, //
DEVICE-TAG
    [in] DWORD
    nNumberOfBytesToRead);
```

Comparing In-the-Wild Attack Behaviors

	STUXNET	Industroyer	Oldsmar
Access to SCADA COM Ports	Exploits SCADA Programs	Terminates SCADA Programs	Uses HMI to access SCADA
Stealth Level	High	Low	Medium
Custom APIs	YES	YES	NO
Physical Attack	Modifies PLC Logic	Control Commands	Control Commands

Case Study: 2016 Industroyer Malware Attack on Ukraine Power Grid

• Industroyer sent malicious commands to circuit breakers and caused power outage

Network Traffic of Industroyer malware: Showing attack payload

Lesson Learned

- Industroyer understood some physics of power systems to cause disruption
- Terminated the SCADA program to hijack COM Ports to physical systems
- Executed Custom API control commands
- Physical sensors can observe the attack effects. But benign physical anomalies can cause false positives

Solution Idea: Correlate SCADA host execution with physical sensor anomalies/effects

Transitioning from virtual test environment

Approach:

- Correlate execution traces in the SCADA hosts with physical sensor effects/anomalies Practical Usability/Commercialization
 - Georgia Tech is leveraging domain knowledge and real systems from Industry Collaborations, such as Meptagon, RAD, and Sandia National Labs
 Georgia

Correlation Analysis <u>SCADA Execution Trace:</u> Frequency and Timing of Write

Tech

Commands via COM Ports

<u>Physical Sensor Values</u>: Predictive Control Model using Self-Attention Neural Network

- S1 Json over MQTT (with Modbus info) over the tunnel from Container (10.0.3.x) to remote_IP:1883
- S2 HMI PC agent over the tunnel to and from IP 10.0.3.x port yyy (??? packet)
- S3 Poll/manage PLC over the tunnel to and from IP 10.0.3.x port 502 (Modbus TCP packet)
- S4 Poll/manage Control PLC over the tunnel to and from IP 10.0.3.x port zzz (Modbus TCP packet)

Example of process information sent to analysis system

"remote ip": "172.17.236.112", "remote interface": "eth1", "remote port": 0, "timestamp": "1153491905.638732000", "eth": { "dst": "00:c0:a8:f2:bf:fb", "dst resolved": "00:c0:a8:f2:bf:fb", "dst oui": "49320", "dst oui resolved": "Gvc Corporation", "addr": "00:c0:a8:f2:bf:fb". "addr resolved": "00:c0:a8:f2:bf:fb", "addr oui": "49320", "addr oui resolved": "Gvc Corporation", "dst lg": "0", "lg": "0", "dst ig": "0", "ig": "0", "src": "00:0c:29:6b:2d:28", "src resolved": "00:0c:29:6b:2d:28", "src oui": "3113", "src_oui_resolved": "VMware, Inc.", "src_lg": "0", "src ig": "0", "type": "0x0800" },

"ip": { "version": "4", "hdr len": "20", "dsfield": "0x00", "dsfield dscp": "0", "dsfield ecn": "0", "len": "52", "id": "0xfd1f". "flags": "0x40", "flags rb": "0", "flags df": "1", "flags mf": "0", "frag offset": "0", "ttl": "128", "proto": "6", "checksum": "0x4289", "checksum_status": "2", "src": "192.168.66.235", "addr": "192.168.66.235", "src host": "192.168.66.235", "host": "192.168.66.235", "dst": "166.161.16.230", "dst host": "166.161.16.230" },

"tcp": { "srcport": "2582", "dstport": "502", "port": "2582", "stream": "6", "completeness": "15", "len": "12". "seq": "265", "seg raw": "4058832470", "nxtseq": "277", "ack": "205", "ack raw": "2322986634", "hdr len": "20", "flags": "0x0018", "flags_res": "0", "flags_ns": "0", "flags cwr": "0", "flags ecn": "0", "flags urg": "0", "flags ack": "1", "flags_push": "1", "flags reset": "0", "flags syn": "0", "flags_fin": "0", "flags str": "······AP···", "window size value": "64036", "window size": "64036", "window size scalefactor": "-2", "checksum": "0x9c14", "checksum status": "2", "urgent pointer": "0",

"": "Timestamps", "time relative": "26.028361000", "time delta": "0.032708000", "analysis": "SEQ/ACK analysis", "analysis acks frame": "179", "analysis ack rtt": "0.032708000", "analysis initial rtt": "3.656992000", "analysis bytes in flight": "12", "analysis push bytes_sent": "12", "payload": "00:00:00:00:00:06:01:16:0 0:00:00". "pdu_size": "12" "mbtcp": { "trans id": "0", "prot id": "0", "len": "6". "unit id": "1" "modbus": { "func code": "22". "reference num": "0", "and mask": "0x0000"

• Thank You